Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Sci Rep ; 14(1): 5090, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429462

RESUMO

The SARS-CoV-2 pandemic has emphasized the need to explore how variations in the immune system relate to the severity of the disease. This study aimed to explore inter-individual variation in response to SARS-CoV-2 infection by comparing T cell, B cell, and innate cell immune subsets among primary infected children and adults (i.e., those who had never experienced SARS-CoV-2 infection nor received vaccination previously), with varying disease severity after infection. We also examined immune subset kinetics in convalescent individuals compared to those with persistent infection to identify possible markers of immune dysfunction. Distinct immune subset differences were observed between infected adults and children, as well as among adult cases with mild, moderate, and severe disease. IgM memory B cells were absent in moderate and severe cases whereas frequencies of B cells with a lack of surface immunoglobulin expression were significantly higher in severe cases. Interestingly, these immune subsets remained stable during recovery implying that these subsets could be associated with underlying baseline immune variation. Our results offer insights into the potential immune markers associated with severe COVID-19 and provide a foundation for future research in this area.


Assuntos
COVID-19 , Adulto , Criança , Humanos , SARS-CoV-2 , Linfócitos B , Cinética , Gravidade do Paciente
2.
ISME Commun ; 4(1): ycae002, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38390521

RESUMO

Pneumococcal carriage studies have suggested that pneumococcal colonization in adults is largely limited to the oral cavity and oropharynx. In this study, we used total abundance-based ß-diversity (dissimilarity) and ß-diversity components to characterize age-related differences in pneumococcal serotype composition of respiratory samples. quantitative PCR (qPCR) was applied to detect pneumococcal serotypes in nasopharyngeal samples collected from 946 toddlers and 602 adults, saliva samples collected from a subset of 653 toddlers, and saliva and oropharyngeal samples collected from a subset of 318 adults. Bacterial culture rates from nasopharyngeal samples were used to characterize age-related differences in rates of colonizing bacteria. Dissimilarity in pneumococcal serotype composition was low among saliva and nasopharyngeal samples from children. In contrast, respiratory samples from adults exhibited high serotype dissimilarity, which predominantly consisted of abundance gradients and was associated with reduced nasopharyngeal colonization. Age-related serotype dissimilarity was high among nasopharyngeal samples and relatively low for saliva samples. Reduced nasopharyngeal colonization by pneumococcal serotypes coincided with significantly reduced Moraxella catarrhalis and Haemophilus influenzae and increased Staphylococcus aureus nasopharyngeal colonization rates among adults. Findings from this study suggest that within-host environmental conditions, utilized in the upper airways by pneumococcus and other bacteria, undergo age-related changes. It may result in a host-driven ecological succession of bacterial species colonizing the nasopharynx and lead to competitive exclusion of pneumococcus from the nasopharynx but not from the oral habitat. This explains the poor performance of nasopharyngeal samples for pneumococcal carriage among adults and indicates that in adults saliva more accurately represents the epidemiology of pneumococcal carriage than nasopharyngeal samples.

3.
Aging Cell ; 23(2): e14048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146131

RESUMO

Effective vaccine-induced immune responses are particularly essential in older adults who face an increased risk of immunosenescence. However, the complexity and variability of the human immune system make predicting vaccine responsiveness challenging. To address this knowledge gap, our study aimed to characterize immune profiles that are predictive of vaccine responsiveness using "immunotypes" as an innovative approach. We analyzed an extensive set of innate and adaptive immune cell subsets in the whole blood of 307 individuals (aged 25-92) pre- and post-influenza vaccination which we associated with day 28 hemagglutination inhibition (HI) antibody titers. Building on our previous work that stratified individuals into nine immunotypes based on immune cell subsets, we identified two pre-vaccination immunotypes associated with weak and one showing robust day 28 antibody response. Notably, the weak responders demonstrated HLA-DR+ T-cell signatures, while the robust responders displayed a high naïve-to-memory T-cell ratio and percentage of nonclassical monocytes. These specific signatures deepen our understanding of the relationship between the baseline of the immune system and its functional potential. This approach could enhance our ability to identify individuals at risk of immunosenescence. Our findings highlight the potential of pre-vaccination immunotypes as an innovative tool for informing personalized vaccination strategies and improving health outcomes, particularly for aging populations.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Idoso , Influenza Humana/prevenção & controle , Linfócitos T , Anticorpos Antivirais , Vacinação
4.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819029

RESUMO

For children, the gold standard for the detection of pneumococcal carriage is conventional culture of a nasopharyngeal swab. Saliva, however, has a history as one of the most sensitive methods for surveillance of pneumococcal colonization and has recently been shown to improve carriage detection in older age groups. Here, we compared the sensitivity of paired nasopharyngeal and saliva samples from PCV7-vaccinated 24-month-old children for pneumococcal carriage detection using conventional and molecular detection methods. Nasopharyngeal and saliva samples were collected from 288 24-month-old children during the autumn/winter, 2012/2013. All samples were first processed by conventional diagnostic culture. Next, DNA extracted from all plate growth was tested by qPCR for the presence of the pneumococcal genes piaB and lytA and a subset of serotypes. By culture, 161/288 (60 %) nasopharyngeal swabs tested positive for pneumococcus, but detection was not possible from saliva due to abundant polymicrobial growth on culture plates. By qPCR, 155/288 (54 %) culture-enriched saliva samples and 187/288 (65 %) nasopharyngeal swabs tested positive. Altogether, 219/288 (76 %) infants tested positive for pneumococcus, with qPCR-based carriage detection of culture-enriched nasopharyngeal swabs detecting significantly more carriers compared to either conventional culture (P<0.001) or qPCR detection of saliva (P=0.002). However, 32/219 (15 %) carriers were only positive in saliva, contributing significantly to the overall number of carriers detected (P=0.002). While testing nasopharyngeal swabs by qPCR proved most sensitive for pneumococcal detection in infants, saliva sampling could be considered as complementary to provide additional information on carriage and serotypes that may not be detected in the nasopharynx and may be particularly useful in longitudinal studies, requiring repeated sampling of study participants.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Lactente , Humanos , Criança , Idoso , Pré-Escolar , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/diagnóstico , Saliva , Sorotipagem , Portador Sadio/diagnóstico , Portador Sadio/epidemiologia
5.
Clin Exp Immunol ; 214(1): 79-93, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37605554

RESUMO

Respiratory syncytial virus (RSV) infections are a major cause of bronchiolitis and pneumonia in infants and older adults, for which there is no known correlate of protection. Increasing evidence suggests that Fc-mediated antibody effector functions have an important role, but little is known about the development, heterogeneity, and durability of these functional responses. In light of future vaccine strategies, a clear view of the immunological background and differences between various target populations is of crucial importance. In this study, we have assessed both quantitative and qualitative aspects of RSV-specific serum antibodies, including IgG/IgA levels, IgG subclasses, antibody-dependent complement deposition, cellular phagocytosis, and NK cell activation (ADNKA). Samples were collected cross-sectionally in different age groups (11-, 24-, and 46-month-old children, adults, and older adults; n = 31-35 per group) and longitudinally following natural RSV infection in (older) adults (2-36 months post-infection; n = 10). We found that serum of 24-month-old children induces significantly lower ADNKA than the serum of adults (P < 0.01), which is not explained by antibody levels. Furthermore, in (older) adults we observed boosting of antibody levels and functionality at 2-3 months after RSV infection, except for ADNKA. The strongest decrease was subsequently observed within the first 9 months, after which levels remained relatively stable up to three years post-infection. Together, these data provide a comprehensive overview of the functional landscape of RSV-specific serum antibodies in the human population, highlighting that while antibodies reach adult levels already at a young age, ADNKA requires more time to fully develop.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Criança , Humanos , Idoso , Pré-Escolar , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Antivirais , Imunoglobulina G , Anticorpos Neutralizantes
6.
Vaccines (Basel) ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515012

RESUMO

The generation of a specific long-term immune response to SARS-CoV-2 is considered important for protection against COVID-19 infection and disease. Memory B cells, responsible for the generation of antibody-producing plasmablasts upon a new antigen encounter, play an important role in this process. Therefore, the induction of memory B cell responses after primary and booster SARS-CoV-2 immunizations was investigated in the general population with an emphasis on older adults. Participants, 20-99 years of age, due to receive the mRNA-1273 or BNT162b2 SARS-CoV-2 vaccine were included in the current study. Specific memory B cells were determined by ex vivo ELISpot assays. In a subset of participants, antibody levels, avidity, and virus neutralization capacity were compared to memory B cell responses. Memory B cells specific for both Spike S1 and receptor-binding domain (RBD) were detected in the majority of participants following the primary immunization series. However, a proportion of predominantly older adults showed low frequencies of specific memory B cells. Booster vaccination resulted in a large increase in the frequencies of S1- and RBD-specific memory B cells also for those in which low memory B cell frequencies were detected after the primary series. These data show that booster immunization is important for the generation of a memory B cell response, as a subset of older adults shows a suboptimal response to the primary SARS-CoV-2 immunization series. It is anticipated that these memory B cells will play a significant role in the immune response following viral re-exposure.

7.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37261428

RESUMO

Invasive group A streptococcal (iGAS) disease cases increased in the first half of 2022 in the Netherlands, with a remarkably high proportion of emm4 isolates. Whole-genome sequence analysis of 66 emm4 isolates, 40 isolates from the pre-coronavirus disease 2019 (COVID-19) pandemic period 2009-2019 and 26 contemporary isolates from 2022, identified a novel Streptococcus pyogenes lineage (M4NL22), which accounted for 85 % of emm4 iGAS cases in 2022. Surprisingly, we detected few isolates of the emm4 hypervirulent clone, which has replaced nearly all other emm4 in the USA and the UK. M4NL22 displayed genetic differences compared to other emm4 strains, although these were of unclear biological significance. In publicly available data, we identified a single Norwegian isolate belonging to M4NL22, which was sampled after the isolates from this study, possibly suggesting export of M4NL22 to Norway. In conclusion, our study identified a novel S. pyogenes emm4 lineage underlying an increase of iGAS disease in early 2022 in the Netherlands and the results have been promptly communicated to public health officials.


Assuntos
COVID-19 , Infecções Estreptocócicas , Humanos , Antígenos de Bactérias/genética , Países Baixos/epidemiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Infecções Estreptocócicas/epidemiologia , Streptococcus pyogenes/genética
8.
EClinicalMedicine ; 61: 102040, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37337616

RESUMO

Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC.

9.
Front Microbiol ; 14: 1156695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138599

RESUMO

Background: Despite strong historical records on the accuracy of saliva testing, oral fluids are considered poorly suited for pneumococcal carriage detection. We evaluated an approach for carriage surveillance and vaccine studies that increases the sensitivity and specificity of pneumococcus and pneumococcal serotype detection in saliva samples. Methods: Quantitative PCR (qPCR)-based methods were applied to detect pneumococcus and pneumococcal serotypes in 971 saliva samples collected from 653 toddlers and 318 adults. Results were compared with culture-based and qPCR-based detection in nasopharyngeal samples collected from children and in nasopharyngeal and oropharyngeal samples collected from adults. Optimal C q cut-offs for positivity in qPCRs were determined via receiver operating characteristic curve analysis and accuracy of different approaches was assessed using a composite reference for pneumococcal and for serotype carriage based on isolation of live pneumococcus from the person or positivity of saliva samples determined with qPCR. To evaluate the inter-laboratory reproducibility of the method, 229 culture-enriched samples were tested independently in the second center. Results: In total, 51.5% of saliva samples from children and 31.8% of saliva samples from adults were positive for pneumococcus. Detection of pneumococcus by qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to diagnostic culture of nasopharyngeal samples in children (Cohen's κ: 0.69-0.79 vs. 0.61-0.73) and in adults (κ: 0.84-0.95 vs. 0.04-0.33) and culture of oropharyngeal samples in adults (κ: 0.84-0.95 vs. -0.12-0.19). Similarly, detection of serotypes with qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to nasopharyngeal culture in children (κ: 0.73-0.82 vs. 0.61-0.73) and adults (κ: 0.90-0.96 vs. 0.00-0.30) and oropharyngeal culture in adults (κ: 0.90-0.96 vs. -0.13 to 0.30). However, results of qPCRs targeting serotype 4, 5, and 17F and serogroups 9, 12, and 35 were excluded due to assays' lack of specificity. We observed excellent quantitative agreement for qPCR-based detection of pneumococcus between laboratories. After exclusion of serotype/serogroup-specific assays with insufficient specificity, moderate agreement (κ 0.68, 95% CI 0.58-0.77) was observed. Conclusion: Molecular testing of culture-enriched saliva samples improves the sensitivity of overall surveillance of pneumococcal carriage in children and adults, but limitations of qPCR-based approaches for pneumococcal serotypes carriage detection should be considered.

10.
Clin Infect Dis ; 76(3): e188-e199, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35796536

RESUMO

BACKGROUND: The immune response to COVID-19 vaccination is inferior in kidney transplant recipients (KTRs) and to a lesser extent in patients on dialysis or with chronic kidney disease (CKD). We assessed the immune response 6 months after mRNA-1273 vaccination in kidney patients and compared this to controls. METHODS: A total of 152 participants with CKD stages G4/5 (eGFR <30 mL/min/1.73 m2), 145 participants on dialysis, 267 KTRs, and 181 controls were included. SARS-CoV-2 Spike S1 specific IgG antibodies were measured using fluorescent bead-based multiplex-immunoassay, neutralizing antibodies to ancestral, Delta, and Omicron (BA.1) variants by plaque reduction, and T-cell responses by interferon-γ release assay. RESULTS: At 6 months after vaccination, S1-specific antibodies were detected in 100% of controls, 98.7% of CKD G4/5 patients, 95.1% of dialysis patients, and 56.6% of KTRs. These figures were comparable to the response rates at 28 days, but antibody levels waned significantly. Neutralization of the ancestral and Delta variants was detected in most participants, whereas neutralization of Omicron was mostly absent. S-specific T-cell responses were detected at 6 months in 75.0% of controls, 69.4% of CKD G4/5 patients, 52.6% of dialysis patients, and 12.9% of KTRs. T-cell responses at 6 months were significantly lower than responses at 28 days. CONCLUSIONS: Although seropositivity rates at 6 months were comparable to rates at 28 days after vaccination, significantly decreased antibody levels and T-cell responses were observed. The combination of low antibody levels, reduced T-cell responses, and absent neutralization of the newly emerging variants indicates the need for additional boosts or alternative vaccination strategies in KTRs. CLINICAL TRIALS REGISTRATION: NCT04741386.


Assuntos
COVID-19 , Transplante de Rim , Insuficiência Renal Crônica , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunoglobulina G , Diálise Renal , Insuficiência Renal Crônica/terapia , SARS-CoV-2 , Linfócitos T , Vacinação
11.
Aging Cell ; 21(10): e13703, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36081314

RESUMO

Immunosenescence describes immune dysfunction observed in older individuals. To identify individuals at-risk for immune dysfunction, it is crucial to understand the diverse immune phenotypes and their intrinsic functional capabilities. We investigated immune cell subsets and variation in the aging population. We observed that inter-individual immune variation was associated with age and cytomegalovirus seropositivity. Based on the similarities of immune subset composition among individuals, we identified nine immunotypes that displayed different aging-associated immune signatures, which explained inter-individual variation better than age. Additionally, we correlated the immune subset composition of individuals over approximately a year as a measure of stability of immune parameters. Immune stability was significantly lower in immunotypes that contained aging-associated immune subsets and correlated with a circulating CD38 + CD4+ T follicular helper cell increase 7 days after influenza vaccination. In conclusion, immune stability is a feature of immunotypes and could be a potential indicator of post-vaccination cellular kinetics.


Assuntos
Anticorpos Antivirais , Imunossenescência , Citomegalovirus , Vacinação
12.
Viruses ; 14(7)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35891550

RESUMO

Omicron BA.1 variant can readily infect people with vaccine-induced or naturally acquired SARS-CoV-2 immunity facilitated by escape from neutralizing antibodies. In contrast, T-cell reactivity against the Omicron BA.1 variant seems relatively well preserved. Here, we studied the preexisting T cells elicited by either vaccination with the mRNA-based BNT162b2 vaccine or by natural infection with ancestral SARS-CoV-2 for their cross-reactive potential to 20 selected CD4+ T-cell epitopes of spike-protein-harboring Omicron BA.1 mutations. Although the overall memory CD4+ T-cell responses primed by the ancestral spike protein was still preserved generally, we show here that there is also a clear loss of memory CD4+ T-cell cross-reactivity to immunodominant epitopes across the spike protein due to Omicron BA.1 mutations. Complete or partial loss of preexisting T-cell responsiveness was observed against 60% of 20 nonconserved CD4+ T-cell epitopes predicted to be presented by a broad set of common HLA class II alleles. Monitoring such mutations in circulating strains helps predict which virus variants may escape previously induced cellular immunity and could be of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos de Linfócito T/genética , Humanos , Glicoproteínas de Membrana , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Proteínas do Envelope Viral/genética
14.
Front Microbiol ; 13: 859736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509314

RESUMO

Background: The specificity of molecular methods for the detection of Streptococcus pneumoniae carriage is under debate. We propose a procedure for carriage surveillance and vaccine impact studies that increases the accuracy of molecular detection of live pneumococci in polymicrobial respiratory samples. Methods: Culture and qPCR methods were applied to detect pneumococcus and pneumococcal serotypes in 1,549 nasopharyngeal samples collected in the Netherlands (n = 972) and England (n = 577) from 946 toddlers and 603 adults, and in paired oropharyngeal samples collected exclusively from 319 Dutch adults. Samples with no live pneumococci isolated at primary diagnostic culture yet generating signal specific for pneumococcus in qPCRs were re-examined with a second, qPCR-guided culture. Optimal Cq cut-offs for positivity in qPCRs were determined via receiver operating characteristic (ROC) curve analysis using isolation of live pneumococci from the primary and qPCR-guided cultures as reference. Results: Detection of pneumococcus and pneumococcal serotypes with qPCRs in cultured (culture-enriched) nasopharyngeal samples exhibited near-perfect agreement with conventional culture (Cohen's kappa: 0.95). Molecular methods displayed increased sensitivity of detection for multiple serotype carriage, and implementation of qPCR-guided culturing significantly increased the proportion of nasopharyngeal and oropharyngeal samples from which live pneumococcus was recovered (p < 0.0001). For paired nasopharyngeal and oropharyngeal samples from adults none of the methods applied to a single sample type exhibited good agreement with results for primary and qPCR-guided nasopharyngeal and oropharyngeal cultures combined (Cohens kappa; 0.13-0.55). However, molecular detection of pneumococcus displayed increased sensitivity with culture-enriched oropharyngeal samples when compared with either nasopharyngeal or oropharyngeal primary cultures (p < 0.05). Conclusion: The accuracy of pneumococcal carriage surveillance can be greatly improved by complementing conventional culture with qPCR and vice versa, by using results of conventional and qPCR-guided cultures to interpret qPCR data. The specificity of molecular methods for the detection of live pneumococci can be enhanced by incorporating statistical procedures based on ROC curve analysis. The procedure we propose for future carriage surveillance and vaccine impact studies improves detection of pneumococcal carriage in adults in particular and enhances the specificity of serotype carriage detection.

16.
Sci Rep ; 12(1): 7937, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562380

RESUMO

This study investigated the dynamics of SARS-CoV-2 infection and diagnostics in 242 household members of different ages and with different symptom severity after SARS-CoV-2 exposure early in the pandemic (March-April 2020). Households with a SARS-CoV-2 confirmed positive case and at least one child in the Netherlands were followed for 6 weeks. Naso (NP)- and oropharyngeal (OP) swabs, oral fluid and feces specimens were analyzed for SARS-CoV-2 RNA and serum for SARS-CoV-2-specific antibodies. The dynamics of the presence of viral RNA and the serological response was modeled to determine the sampling time-frame and sample type with the highest sensitivity to confirm or reject a SARS-CoV-2 diagnosis. In children higher viral loads compared to adults were detected at symptom onset. Early in infection, higher viral loads were detected in NP and OP specimens, while RNA in especially feces were longer detectable. SARS-CoV-2-specific antibodies have 90% probability of detection from 7 days (total Ig) and 18 days (IgG) since symptom onset. For highest probability of detection in SARS-CoV-2 diagnostics early in infection, RT-PCR on NP and OP specimens are more sensitive than on oral fluid and feces. For SARS-CoV-2 diagnostics late after infection, RT-PCR on feces specimens and serology are more valuable.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Criança , Humanos , RNA Viral/genética , SARS-CoV-2/genética
18.
Viruses ; 14(4)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458527

RESUMO

Influenza-like illness (ILI) can be caused by a range of respiratory viruses. The present study investigates the contribution of influenza and other respiratory viruses, the occurrence of viral co-infections, and the persistence of the viruses after ILI onset in older adults. During the influenza season 2014-2015, 2366 generally healthy community-dwelling older adults (≥60 years) were enrolled in the study. Viruses were identified by multiplex ligation-dependent probe-amplification assay in naso- and oropharyngeal swabs taken during acute ILI phase, and 2 and 8 weeks later. The ILI incidence was 10.7%, which did not differ between vaccinated and unvaccinated older adults; influenza virus was the most frequently detected virus (39.4%). Other viruses with significant contribution were: rhinovirus (17.3%), seasonal coronavirus (9.8%), respiratory syncytial virus (6.7%), and human metapneumovirus (6.3%). Co-infections of influenza virus with other viruses were rare. The frequency of ILI cases in older adults in this 2014-2015 season with low vaccine effectiveness was comparable to that of the 2012-2013 season with moderate vaccine efficacy. The low rate of viral co-infections observed, especially for influenza virus, suggests that influenza virus infection reduces the risk of simultaneous infection with other viruses. Viral persistence or viral co-infections did not affect the clinical outcome of ILI.


Assuntos
Coinfecção , Coronavirus , Influenza Humana , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Idoso , Coinfecção/epidemiologia , Humanos , Lactente , Viroses/epidemiologia
19.
Vaccine ; 40(15): 2251-2257, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287986

RESUMO

BACKGROUND: With COVID-19 vaccine roll-out ongoing in many countries globally, monitoring of breakthrough infections is of great importance. Antibodies persist in the blood after a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since COVID-19 vaccines induce immune response to the Spike protein of the virus, which is the main serosurveillance target to date, alternative targets should be explored to distinguish infection from vaccination. METHODS: Multiplex immunoassay data from 1,513 SARS-CoV-2 RT-qPCR-tested individuals (352 positive and 1,161 negative) without COVID-19 vaccination history were used to determine the accuracy of Nucleoprotein-specific immunoglobulin G (IgG) in detecting past SARS-CoV-2 infection. We also described Spike S1 and Nucleoprotein-specific IgG responses in 230 COVID-19 vaccinated individuals (Pfizer/BioNTech). RESULTS: The sensitivity of Nucleoprotein seropositivity was 85% (95% confidence interval: 80-90%) for mild COVID-19 in the first two months following symptom onset. Sensitivity was lower in asymptomatic individuals (67%, 50-81%). Participants who had experienced a SARS-CoV-2 infection up to 11 months preceding vaccination, as assessed by Spike S1 seropositivity or RT-qPCR, produced 2.7-fold higher median levels of IgG to Spike S1 ≥ 14 days after the first dose as compared to those unexposed to SARS-CoV-2 at ≥ 7 days after the second dose (p = 0.011). Nucleoprotein-specific IgG concentrations were not affected by vaccination in infection-naïve participants. CONCLUSIONS: Serological responses to Nucleoprotein may prove helpful in identifying SARS-CoV-2 infections after vaccination. Furthermore, it can help interpret IgG to Spike S1 after COVID-19 vaccination as particularly high responses shortly after vaccination could be explained by prior exposure history.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/prevenção & controle , Humanos , Nucleoproteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
20.
Blood Adv ; 6(5): 1537-1546, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35114690

RESUMO

Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe COVID-19, it is important to identify those patients that benefit from vaccination. We prospectively quantified serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens during and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG ≥ 300 binding antibody units (BAUs)/mL was considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals, and it correlates with potent virus neutralization. Selected patients (n = 723) were severely immunocompromised owing to their disease or treatment thereof. Nevertheless, >50% of patients obtained S1 IgG ≥ 300 BAUs/mL after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations. Around 70% of patients with chronic graft-versus-host disease (cGVHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG ≥ 300 BAUs/mL. Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses in patients with lymphoma, patients with CLL on ibrutinib, and chimeric antigen receptor T-cell recipients were low. The minimal time interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was <2 months for multiple myeloma, 8 months for lymphoma, and 4 to 6 months after allogeneic HCT. Serum IgG4, absolute B- and natural killer-cell number, and number of immunosuppressants predicted S1 IgG ≥ 300 BAUs/mL. Hematology patients on chemotherapy, shortly after HCT, or with cGVHD should not be precluded from vaccination. This trial was registered at Netherlands Trial Register as #NL9553.


Assuntos
COVID-19 , Hematologia , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...